
Unsupervised document summarization using pre-trained sentence embeddings and graph centrality
Workshop on Scholarly Document Processing 2021 LongSumm shared task

Juan Ramirez and Evangelos Milios
Dalhousie University

Introduction

The essential idea of this work is that, while the sentence embeddings produced by SBERT are

not well suited for clustering algorithms like Hierarchical Clustering or DBSCAN, they produce

excellent results in Paraphrase Identification or Semantic Textual Similaritywhen comparedwith

Cosine Similarity, which implies that they can be used along with graph centrality methods. The

text summarization method proposed in this paper has the following contributions:

Is unsupervised and can be used as a proxy for more advanced summarization methods.

Can easily scale to arbitrarily large amounts of text.

Is fast and easy to implement.

Can fit any length requirements for the production of summaries.

Methodology

The system is composed of three main steps: first, we use SBERT to produce sentence embed-

dings for every sentence in the document to summarize; next, we form a graph by comparing all

the pairs of sentence embeddings obtained and finally, we rank the sentences by their degree

centrality in this graph. Fig. 1 gives an overview of the whole method.

Document

Tokenization

Sentence

Embeddings

Graph Gen-

eration

Ranking

Selection

Summary

Figure 1:The complete pipeline of the proposed method. In the first step, we split the input text into sentences by

using a regular expression handcrafted specifically for scientific documents. In the second step, we compute the

sentence embeddings of the parsed sentences using SBERT. In the third step, we create a graph by comparing all

the pairs of sentence embeddings obtained using cosine similarity. In the fourth step, we rank the sentences by the

degree centrality in the generated graph. In the fifth and final step, we only keep a certain number of sentences or

words to adjust to the length requirements of the summary.

Sentence tokenization

The first step of our pipeline is to split the input text into a list of sentences. This step is critical

because if the sentences are too long, the final summary will have a lot of meaningless content

(therefore losing precision). However, if the sentences are too short, there is a risk of not having

enough context to produce an accurate sentence embedding for them or extracting meaningless

sequences, like data in tables or numbers that lie in the middle of the text. We found that the

function sent_tokenize() from the NLTK package often failed because of the numbers in the tables

and the abbreviations, like "et al.", which are very common in scientific literature. Because of

this, we used a regular expression handcrafted specifically to split the text found in scientific

documents.

Computing sentence embeddings

After extracting the sentences, the next step is to produce the sentence embedding of each

sentence using SBERT , which is a Transformer-based model built on top of BERT that takes as

input sentences and produces sentence embeddings that can be compared with cosine similarity,

which is given by the following formula:

sim(x, y) = x · y

|x||y|
.

These sentence embeddings are superior in quality than taking the CLS token of BERTor averaging

the sentence embeddings of the words in the sentence produced by BERT, GloVe , or Word2Vec

.

SBERT, like BERT, was pre-trained on a general large text collection to learn good sentence em-

beddings, but it has to be fine-tuned on a more specific data set according to the task. Since we

are working with scientific papers, we picked the "base" version of RoBERTa that was fine-tuned

in the MSMARCO data set for the Information Retrieval task.

Generation of the sentence graph

After the sentence embeddings have been produced, the next step is to produce a weighted

complete graph with a node for each sentence in the text. Its edges are weighted according to

the cosine similarities of the corresponding sentence embeddings. An example graph is depicted

in Fig. 2.

Figure 2:The process of graph generation and ranking of the sentences. Every node in the generated complete graph

represents a sentence in the document and the weight of each edge is given by the similarity between the nodes it

conects. The importance of the sentence in the document is modelled as rank(si) =
∑n

j=1 1 − sim(ei, ej), where ei

and ej are the corresponding SBERT sentence embeddings of si and sj.

Ranking by centrality

The forth step is to assign a score for each sentence that allows us to sort them by their importance

in the document. As a consequence, we define the importance rank for each sentence as follows:

rank(si) =
n∑

j=1
A[i, j] =

n∑
j=1

1 − sim(ei, ej),

where ei and ej are the corresponding SBERT sentence embedding for si and sj.

Summary selection

The final step in the method is to select the sentences that are going to form the summary. To

do this, we can take only the bottom n-percentile in reverse (as opposed to the top n-percentile,

since in our method, a lower rank means that the sentence is more important in the document) or

concatenate the ranked sentences in reverse (so that the sentences with the lowest ranks -that is,

the most important ones- come first) and take the first k words to satisfy a word-length constraint
for the summaries.

Results

Overall, we observed that the 600-word constraint of the task prevented our method from per-

forming better, but we also observed that the best summaries produced by our method are too

long (around 1,000 words or more). Table 1 displays the performance of the method variations

that we submitted to the task.

Bottom % ROUGE-1 ROUGE-2 ROUGE-L Avg. Length

F-measure Recall F-measure Recall F-measure Recall

1.0 0.24 0.15 0.06 0.03 0.11 0.07 183.2

1.5 0.29 0.21 0.08 0.05 0.13 0.09 257.0

2.0 0.33 0.25 0.08 0.06 0.14 0.10 314.8

2.5 0.37 0.29 0.09 0.07 0.15 0.11 366.7

5.0 0.44 0.39 0.12 0.10 0.16 0.14 530.5

10.0 0.46 0.43 0.12 0.12 0.17 0.16 591.3

15.0 0.46 0.43 0.12 0.12 0.17 0.16 597.0

Table 1: Performance of the different variations of the proposed method submitted to the task. In this setting, the

ranked sentences were sorted in reverse and concatenated to form a preliminary output, which was truncated at 600

words to comply with the task's requirements. The "Bottom %" column displays the percentile used in the sentence

selection phase of the method. Avg. Length displays the average length in words of the summaries produced for the

test set.

Conclusion and FutureWork

The method introduced in this work displays competitive performance with more sophisticated

methods and can be useful when there is not enough labelled data to train a deep neural sum-

marization system while being fast, simple and efficient. Overall, we observed that the recall

component of ROUGE for the proposed method has much room for improvement, as having sen-

tences as the minimal text units makes it harder to include relevant phrases that are joined with

others that are not so relevant. Another important future direction is to reduce the redundancy of

the summaries, as it is common to have several versions of the same important sentence scattered

across the document, so all these versions of the sentence appear in the final summary.

Contact information

email: juan.ramirez@dal.ca
website: https://auto-summ.herokuapp.com/

